

Pro Fet II Rear

1.General

1. Technical Specifications 3.
2. Measuring devices/methods 3.
3. Safety Instructions 4.
4. Components and spares 4.
5. Accuracy of measurements 4.
6. Dismantling instructions 4.

2. Testing and regulating

1. Basic Configuration 5.
2. Preamp 5.
3. Power amp

- Protections 6 f .
- Parameters 7 f .

3. Diagrams

1. Block diagram 9.
2. Wiring diagram 10.
3. Circuit diagrams
4. Preamp
5.
6. Effects
7.
8. Power amplifier 13.
9. Board Layout's
10. FET2VV1 14.
11. FETBU
12.
13. PA400IR
14.
15. Oscillograms
16. MP1-MP9 17.
17. Analyser Curves
18. Frequency Filter
19.

• Main supply.. $230 \mathrm{~V} / 115 \mathrm{~V}$
• Speaker Out.. $250 \mathrm{~W} / 4$ Ohm
• Input... 25 mV

- Frequency Filter

LOW BOOST	BASS	PUNCH	MID FREQ. MID LEVEL		ATTACK	TREBLE	HIGH BOOST
$\mathbf{3 0 ~ H z}$	$\mathbf{7 5} \mathbf{~ \mathbf { ~ z }}$	$\mathbf{2 3 0} \mathbf{~ H z}$	250 Hz	$-12,5 \mathrm{~dB}$	$\mathbf{2} \mathbf{~ k H z}$	$\mathbf{6 , 5} \mathbf{~ k H z}$	$\mathbf{2 5} \mathbf{~ k H z}$
+10 dB	$-12,5 \ldots 12,5 \mathrm{~dB}$	$-12 \ldots 12 \mathrm{~dB}$	bis 7 kHz	bis +12.5 dB	$-12 \ldots 12 \mathrm{~dB}$	$-12 \ldots . .12 \mathrm{~dB}$	$-12 \ldots 12 \mathrm{~dB}$

Headhpone . 200 Ohm,stereo
Direct Out. $.0 \mathrm{dBu}, 600 \mathrm{Ohm}$
Effects Loops mono serial
send $0 \mathrm{dBu}, 600 \mathrm{Ohm}$ return $0 \mathrm{dBu}, 10 \mathrm{kOhm}$

- Switches ground lift
DI pre/post
Dimensions (W/H/D) $483 \mathrm{~mm} \times 90 \mathrm{~mm} \times 375 \mathrm{~mm}$
- Weight $11,5 \mathrm{~kg}$

I. 2 Measuring devices/methods

Variable transformer
Oscilloscop
Ton generator
Multimeter
Stabilised-DC pwer supply (0V... $\pm 10 \mathrm{~V}$)
Loadresistance (4 ohms / 250W)

Please read the safety instructions on the rear panel before opening the device. Above all, be sure to disconnect the device from the mains before commencing any repair work. Special care must be taken when working in the power amplifier areas as DC voltages in excess of $>140 \mathrm{~V}$ (power amplifier) may be present. The normal precautions should be observed when working with MOS elements

I. 4 Components and spares

Any parts that prove defective should only be replaced by original spare parts as the use of substitute types could result in a shifting of the operating point, with the result that the correct operation of the device can no longer be guaranteed. This is especially true in the area of the power amplifier where components have been precisely measured

I. 5 Accuracy of measurements

The measurements documented in the circuit specifications are to be understood as approximate values. Any deviation from the stated values should not, however, exceed 10%. The oscillograms for themeasurement points (exceptMP7)beginatpage17.

I. 6 Dismantling instructions

Front Panel

To remove the front panel, first loosen the screws highlighted in black.
Then remove the power supply cable and accompanying cable fasteners from inside the device.

Power Amplifier

In order to dismantle the power amplifier, loosen the screws marked in grey in Fig. 2 . Then the cables that are plugged in should be removed before the soldered cables are separated from their contacts.

Fig. 2.: Position of the srews
a) front panel; b) base; c) rear panel

To conduct a test on a Warwick Pro Fet II with the measuring data given below, you must first set the variable parameters in the channel strips to what will henceforth be described as their LINEAR configuration.

Gain \Master	10
Limiter \backslash Mute	OFF
Low Boost \backslash High Boost	OFF
Bass \backslash Punch \backslash Mid Level \backslash Attack \backslash Treble	0

Bild 3.: Pro Tube II Basic configuration
NOTE: An effective examination of the Pro Fet II can only be carried out using a frequency analyser. The graphs needed for the evaluation begin on page 18.

2.2 Preamp

Testing the filter

To test the filters (Low Boost, Bass, Punch, Mid, Attack, Treble, High Boost) a tone generator is connected to the input and the controls of the Pro Fet II are set to their LINEAR configuration. The signal is measured using an oscilloscope at the Effects Send output.
The filter to be tested is first turned all the way to the right (see the "Boost" table) and then all the way to the left (see the "Cut" table). When testing the Mid filter, you also have to set the cutoff frequency (250,

Input Vss/mV	Filter Options	Filter Frequency f/Hz	Boost $(+\mathbf{6})$	Cut/Vss (-6)
10	Low Boost	30	1,4	$/$
10	Bass	70	1,5	88 m
10	Punch	230	1,5	92 m
10	Mid Level (250)	250	1,8	80 m
10	Mid Level (7k)	$7,2 \mathrm{k}$	1,7	80 m
10	Attack	$2,1 \mathrm{k}$	1,5	96 m
10	Treble	$6,8 \mathrm{k}$	1,6	96 m
10	High Boost	25 k	1,8	$/$

Once the filter to be tested has been activated, the frequency with the greatest degree of amplification must be determined. This is then compared w ith the data in the adjacent table and should deviate by nomorethan $\pm 15 \%$.

Instructions concerning the Limiter, Gain

To test these LEDs, the controls of the ProFetIImust be in their LINEAR configuration. The switching levels of these LEDs are set out in the circuit diagram for the preamp.
To test the Gain and Limiter LED, a sine wave signal of approximately 1 kHz , variable in its amplitude, is applied to the input.
The signal is measured using an oscilloscope at $\mathbf{P I N}-7$ or $\mathbf{6}$ of $\boldsymbol{I C 1}$. The input signal is then increased until the switching point of the yellow LED is reached. The measurement taken at IC1 is then compared with the level given in the circuit diagram. The input signal is then increased still further so that the OK andClip LEDs can be tested in the samemanner. To test the Limiter, first activate it and then proceed in the same manner as before.

When the device is switched on, there should be a noticeable delay before it powers up. You should be able to hear the relay operating. The length of the delay should be about two seconds.

TTENTION: If it becomes neccesary to replace a broken power amp transistor, it's strongly recommendet to use original spare parts supplied by the maufacturer only. Also, even in case of ONE broken power amp transistor, you should replace the whole set, which means 2xIRFP9240 or 2XRFP240.

DC Voltage Protection

The following procedure is used to test the circuit that protects against DC voltage at the output:

Switch off the device
-Removed fuses Sil to Si2 (take care to discharge the input capacitors)
Connect a multimeter to the emitter of transistor T 17 (1 V range)
Connect a stabilised DC source (set to 0V) to the output
Switch on the ProFetII

Now slowly raise the DC voltage at the Pro Fet IVs output (positive and negative tests) until the device is seen to switch off (the Mute LED will illuminate and the relay will switch off). When the switch-off occurs, the voltage at T17 should be c. 0.6 V .
If the Pro Fet II has not switched off by the time the DC source voltage reaches 3V, there is a fault.
Note that there is an electrolytic capacitor in the protective circuit to ensure a sluggish response. That is why it is essential to increase the voltage slowly. The external DC voltage is interrupted when the relay switches off and after a short interval, during which the power amplifier will be in Standbymode, itwillreturntoOperatingmode .

Temperature control

Before performing this test, the stabilised DC voltage power supply should be set to +8 V . The simplest way of connecting the Earth is to connect it to the Speaker Out (Minus). The other output of the voltage source is connected to NTC2. (Attention: one pin of NTC 2 is connected to Earth)
The following table shows how the protective circuit reacts at various operating points.
Here too it should be borne in mind that the stated

Fan ON	6 V
Standby ON	$3,5 \mathrm{~V}$
Standby OFF	$4,5 \mathrm{~V}$
Fan OFF	$7,5 \mathrm{~V}$

Short-circuit protection

When testing the short-circuit protection, a 40 hm (250 W) load resistance is attached to the Speaker Out of the amplifier and an additional $1(250 \mathrm{~W})$ ohm load resistance to the earth of the output (see Fig. 4) A sine wave signal of c .1 kHz should be applied to the Effects Return and increased until the oscilloscope at the output shows

Fig. 4.: Short-circuit test (SPEAKER OUT)

72 V (peak-to-peak) (Master: 10). The output should then be connected with the 10 hm resistance. Directly afterwards, the Pro Fet II should switch to Standby mode and remain there until it is switched off.

NOTE: If the load resistance can be varied to 2 ohms, the output stability can also be tested. For this purpose, the output must be connected to the 2 ohms load resistance, but the power amplifier must not be allowed to switch over to Standby mode before 15 Veff.

2.3 Power amp / Parameters

Trimming the quiescent current

The quiescent current is balanced using the parallel connected resistors R1 \|R2 .
To set the quiescent current a digital multimeter is also connected to the resistors R1 \| R 2 to measure the voltage drop.
The measured value should fall at least within the range $1.0 \mathrm{mV}-2.0 \mathrm{mV}$. If this is not the case, it can be trimmed using the potentiometer P1.
When taking these measurements, take care that there is no sig nal at the input and no load at the output. The measurements should be taken at room temperature and as soon as possible after switching on the device, as warming of the power amplifier could cause deviations.

Limiting the output signal

For this test 4 ohms (450W short term) load resistance is connected to the Speaker Out The input signal, a sine wave signal with a frequency of 1 kHz and an amplitude of $0 . . .5 \mathrm{~V}$ (peak-topeak), is applied to the Effects Return. For these measurements, the necessary front panel settings are as follows
front

Master: 10

Fig. 5.: required settings
The signal at the Effects Return is slowly increased to 1,6V (peak-to-peak). See the table for the reaction of the input signal.

There should be no limiting of the output signal until the input signalreaches around $1,6 \mathrm{~V}$ (peak-to-peak).
If the input signal is increased beyond this point, some limiting of the output signal should be observable on the oscilloscope.

Input	$\underline{1}$ Output
$1,6 \mathrm{Vss}$	ca.: 96 Vss
1 kHz	34 Veff
	1 kHz
	4Ω

Frequency linearity

The frequency linearity is tested using a tone generator and voltage meter. The input signal is connected to the Effects Return socket on the rear panel of the Pro Fet II. For the measurement to be carried out, it is essential that the signal be variable between $100 \mathrm{~Hz} \ldots 1 \mathrm{kHz} . . .10 \mathrm{kHz}$ (switched is sufficient). A load resistance of 4 ohms (250W) and a voltage meter should be connected to the output. A 1 kHz signal should then be directed to the Effects Return and the control adjusted so that an output signal of 28 V (peak-to-peak) (10 Veff) is maintained.
The frequency of the input signal should be switched to 10 Hz and then to 10 kHz . The valu e of the resultant output signal should not deviate bymore than 10% fromits initial value.

Ground/Lift

Finally the function of the Ground / Lift switch should be checked. For this purpose, a multimeter should be switched between the earths of the chassis and the device (Interior partition-Speaker Out(Minus)). The resistance values for

Ground	0Ω
Lift	$\mathbf{1} \mathbf{M} \Omega$

Page 10

$\begin{aligned} & \text { GND } \\ & \mathrm{Ki}_{1}\end{aligned}>$

Wenn mit einem Frequenz-Analyser gearbeitet wird sind die entsprechenden Eingangspegel den Kurven zu entnehmen.
Die Aufnahme der Kurven erfolgt
ausschließlich am "Effekt Send" Ausgang.
The input Level is shown at the corresponding
analyser graph.
Connect the frequency analyser to the "Effekt
Send" Channel only.

